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ABSTRACT

We consider an abstract numerical simulator described by the function:

f : X → R

x 7→ f (x) ≡ y,
(1)

whose scalar input parameters (x1, . . . , xd) = x ∈ X ⊆ Rd are uncertain, leading to an uncertainty
in the output value y. In a probabilistic uncertainty quantification (UQ) framework, these uncertain
input parameters are commonly described by random variables defined on a probability space
(Ω,A, P). The input vector x is then replaced by a X -valued random vector X : Ω → X whose
components Xi are independent random variables with probability distributions given by expert
knowledge; as a consequence, Y ≡ f (X) is a random variable whose distribution is unknown.
In UQ studies, we are often interested in the first central moments of Y. Moreover, sensitivity
measures such as Sobol’ indices are commonly computed to quantify the shares of output
variability attributable to the different input parameters.

Monte Carlo (MC) methods are popular and powerful approaches for the estimation of
statistical parameters (expectations, variances, covariances). However, it is well-known that the
root mean square error ε of the MC estimator of the expectation converges slowly as a function of
the sample size M, specifically ε = O(1/

√
M) for the sample mean estimator of the expectation.

Reducing this error by a factor of r thus implies increasing the sample size by a factor of r2. In
practice, for the quantity of interest Y = f (X), obtaining a realization of the expectation estimator
EM[Y] requires M calls to the numerical simulator f . This slow convergence may thus become
a critical issue, especially if sampling involves computationally expensive operations, such as
solving a (discretized) partial differential equation.
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(a) Illustrative MLMC mesh hierarchy
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(b) MLMC vs MC convergence

100

101

102

103

104

105

106

107

108

109

102 103 104 105 106

sa
m
pl
e 
si
ze

 M
ℓ 
at

 le
ve
l ℓ

Normalized cost C

ℓ=0
ℓ=1
ℓ=2
ℓ=3

ℓ=4
ℓ=5
ℓ=6
ℓ=7

ℓ=8
ℓ=9
ℓ=10

(c) Sample size per level

Figure 1

Multilevel Monte Carlo (MLMC) methods [1] were developed to improve the overall computa-
tional cost of MC sampling by introducing a sequence of so-called levels `, usually corresponding
to a hierarchy of numerical simulators { f`}`≥0 with increasing accuracy and corresponding cost of
individual simulations (see Fig. 1(a)). Typically, an efficient MLMC estimation will require a large
number of samples on the coarsest (cheapest) levels and fewer samples on finer (more expensive)
levels. Originally designed for the estimation of expectations, MLMC was recently extended to the
estimation of higher-order statistical moments such as variances [2]. We focus here on the MLMC
estimation of covariances, which are particularly interesting for the computation of Sobol’ indices
in the context of sensitivity analysis [3]. Indeed, the first-order Sobol’ index Si associated to the
i-th random input Xi can be written in “pick-and-freeze” formulation as

Si ≡
V[E[ f (X)|Xi]]

V[ f (X)]
=

C[ f (X), f (X[i])]

V[ f (X)]
, X[i] ≡ (X′1, . . . , X′i−1, Xi, X′i+1, . . . , X′d), (2)

where X[i] denotes the random vector whose i-th component is Xi (“frozen”), while its j-th
component (j 6= i) is X′j, where X′j is an i.i.d. copy of Xj.

We applied the MLMC methodology to the estimation of the covariance term in the numerator
of Si, for the output of a discretized ordinary differential equation with random parameters.
Fig. 1(b) shows that MLMC has a better convergence rate compared to standard MC, specifically
εML = O(C−1/2) and εMC = O(C−1/3), leading to a significant reduction of the overall estimation
cost. Indeed, using standard MC sampling to obtain an RMSE of 2× 10−3 is about 250 times more
expensive than using MLMC. Fig. 1(c) confirms that more samples are required on cheaper levels.
Moreover, as we increase the computational budget, finer (more expensive) levels are considered.
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