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ABSTRACT

This work addresses the iterative resolution of linear systems which arise upon sampling dis-
cretized stochastic PDEs of the form

∇ · [κ(x, θ)∇u(x, θ)] = − f (x), x ∈ Ω, θ ∈ Θ (1)

with random coefficient field κ(x, θ). Following a Monte Carlo (MC) approach, each realization
of κ(x, θ) leads to a linear system whose solution is used to compute statistics of the random
solution u(x, θ). To reduce the error of those statistics, a large number of realizations needs to
be drawn resulting in a long sequence of linear systems whose resolution dominates the overall
computational cost and time of uncertainty analyses.

When solving those systems with Krylov-based iterative techniques, it is possible to extract
spectral information of previous systems to accelerate the convergence of subsequent resolutions.
For instance, the deflation method constrains the search of solution to iterates with residuals
in the orthogonal complement of an invariant subspace. Realistically, this deflation subspace
(DS) is spanned by eigenvector approximations of the sampled operator associated with the
eigenvalues which most hinder convergence. As a system is resolved, a basis of the augmented
Krylov subspace is stored and used to approximate relevant eigenvectors of the next sampled
operator, see [1]. These two steps (deflated resolution followed by approximate spectral reduction)
are repeated throughout the sequence of sampled systems. In practice, the deflation is applied
to preconditioned systems where the preconditioner can be (i) the same for all systems, or (ii)
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Figure 1: Left: Spectra of preconditioned operators. Right: Relative decrease of iterations of DPCG over PCG.

system-dependent. While the former may reduce the cost of setting up and computing potential
factorizations, it will statistically not act as efficiently as a system dependent approach.

This work investigates the effect of the preconditioner and sampling strategy on the perfor-
mance of the deflated method. We consider the 1D case of Eq. (1) over a domain of unit length with
stationary log-normal coefficient field, such that log κ(x, θ) has a squared exponential covariance
with variance σ2 and correlation length `. All sampled problems are discretized on the same
finite element mesh, resulting in symmetric positive definite systems. Truncated Karhunen-Loève
(KL) expansions of log κ are used to sample the coefficient field. The random variables in the KL
expansion are sampled (i) by MC, or (ii) by Markov chains MC (MCMC), leading to sequences of
independent or correlated realizations of κ, respectively. The rationale behind the MCMC sampling
is to improve the relevance of the computed DS by using a correlated sequence of operators.

We consider two constant and one system-dependent preconditioners, namely, the median
system, the block-Jacobi (BJ) of the median system, and the BJ of each system. Fig. 1 compares
the spectra of preconditioned systems for 3 independent samples of κ at two variance values (left
plot). Preconditioning with each system-BJ (in red) shows efficient clustering of the eigenvalues
around unity with a number (related to the number of blocks) of eigenvalues isolated away from
one. Median-BJ (in black) exhibits similar spectra, but with less effective clustering around one.
System-BJ leads to faster PCG resolutions than median-BJ, and increasingly so as the variance
is increased. Preconditioning with the median (in green) clusters efficiently all the eigenvalues
around one, leads to fastest PCG resolutions, but is not a viable option for high-dimensional
problems. Fig. 1 shows the acceleration measured by the ratio nDPCG/nPCG of iterations needed to
converge with or without deflation (right plot). For the median preconditioner (in green), DPCG
yields no significant improvement; in contrast, deflating with median-BJ (in black) exhibits a sharp
drop in the iteration numbers, asymptotically more than halved compared to PCG. This suggests
a convergence to an almost system-independent DS which can be exploited to save computational
resources, ceasing to update the DS after it has converged. For instance, reusing the DS of the
200-th system for all subsequent computations induced here no deterioration of the performance.
Although not plotted here, MCMC sampling of κ results in similar accelerations as MC, so that
MC should be preferred for its higher sampling efficiency.
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