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ABSTRACT

Reaction rate coefficients are cornerstones in modeling hypersonic flows, as they quantify the
rates at which the quantum states of the mixture components get populated, or depleted, as a
result of collisional processes; they play a fundamental role in the identification of the energy-
conversion mechanisms and, thus, in the final prediction of the heat fluxes experienced by the
surfaces of hypersonic vehicles. Thanks to the exponential increase in computational power, in the
last 15 years rapid progress has been made in computing state-to-state rate coefficients starting
from the first principles of quantum chemistry, by taking advantage of Potential Energy Surfaces
(PESs) for characterizing the interactions between atoms. However, the reaction rates obtained
following such ab-initio procedure are heavily influenced by the choices that are made at the
moment of deciding the geometric configurations at which the electronic SchrÃűdinger equation
is solved, of selecting the techniques to use in order to obtain the electronic energies (i.e., electron
correlation effects and atomic orbital basis set expansion), and of electing the functional form
for fitting the points Fig. 1. Consequently, one of the priorities for the hypersonic community
is the development of a systematic approach for assessing the impacts that such choices have
on the flow-filed quantities of interest. We propose the construction of a non-deterministic PES,
by extending in a stochastic manner the Permutation Invariant Polynomials Neural Networks
proposed by Jiang and Guo. Bayesian Inference through the Automatic Differentiation Variational
Inference algorithm by Kucukelbir et al. is applied in order to compute the posterior distributions
of network’s weights and biases. The stochastic PES, Fig. 2, is then sampled, and the gradients of
the resulting surfaces are used as source terms of the Hamiltonian Equations, based on the Quasi
Classical Trajectory method (QCT). By repeating these collisions for a number of initial atomic
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distances and velocities, it is finally possible to quantify the impact of the PES and trajectory
dynamics uncertainties on the state-specific rate coefficients, Fig. 3.

Figure 1: Main sources of uncertainties in the ab-initio
computation of rate coefficients.

Figure 2: Comparison between the Permutation Invari-
ant Polynomial Neural Network (in red) and
the N3 NASA Ames (in green) PESs.

Figure 3: Propagation of potential energy surface and collision dynamics uncertainties to some N2 state-specific
dissociation rates.
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