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Abstract

SNOWPAC (Stochastic Nonlinear Optimization With Path-Augmented Constraints) solves optimiza-
tion under uncertainty (OUU) problems where the underlying problem is only available as black box,
using a derivative-free trust region approach. Monte Carlo estimators are used to evaluate the objective
and constraint functions of the OUU formulation. Fully linear models for noisy functions and Gaussian
process surrogate models smooth these noisy function evaluations. We use these ingredients to develop
near-optimal noise correction schemes for SNOWPAC. We also describe the use of multifidelity Monte
Carlo estimators, and their error estimates, to reduce the overall computation cost of optimization. We
report results on benchmark problems and demonstrate the entire framework in the computationally
challenging design of a scramjet combustor.

I. Introduction

The stochastic optimization method SNOWPAC [Augustin & Marzouk, 2017] extends the de-
terministic derivative-free trust region method NOWPAC [Augustin & Marzouk, 2014], which
proposes a new way of handling nonlinear constraints via an “inner boundary path” that guar-
antees feasibility. In particular, NOWPAC employs an additive function to convexify nonlinear
constraints that are known only through pointwise evaluations, thus yielding feasible trial steps
and global convergence to a local first-order minimum.

SNOWPAC tackles OUU problems formulated as follows:

minR f
π(x, θ),

s.t. Rci
π(x, θ) ≤ 0, i = 1, . . . , r.

(1)

with design parameters x ∈ Rd and uncertain parameters θ ∼ π, where π is a probability
distribution over Θ ⊆ Rk. Here R f

π and Rc
π are measures of robustness or risk derived from

the objective function f : Rd × Θ → R and nonlinear inequality constraints ci : Rd × Θ → R,
i = 1 . . . r, respectively. An example robustness measure is a linear combination of mean Eπ [ · ]
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and variance Vπ [ · ], which accounts for the average and spread of possible realizations. Other
options include event probabilities (yielding chance constraints) or conditional value-at-risk.

II. Methods

To evaluate the measures Rb
π given in (1), we use Monte Carlo estimators Rb (where b is f or ci).

Doing so introduces an error that depends on the number of samples N, i.e.,Rb = Rb + εb
N for some

random variable εb
N . A first step to mitigating the impact of this error is to employ the minimum

Frobenius norm surrogate models mb
k introduced in [Kannan and Wild, 2012], in a neighborhood

(called the trust region) of size ρk around the current design xk. The maximum magnitude of
the noise yields a lower bound on the trust region radius, ρk ≥ λ

√
εmax,k = maxi λ

√
εN(xk,i), for

λ ∈ (0, ∞) and evaluation points {xk,i}M
i=1 at each optimization step k.

To allow the trust region radius to shrink, SNOWPAC uses Gaussian process (GP) surrogates
to gradually smooth the noisy function evaluations Rb

k,i := Rb(xk,i), replacing them with

R̃b
k,i = γk,iµ

GP
k,i + (1− γk,i)Rb

k,i, (2)

where µGP
k,i := µGP(xk,i; {Rb

i }M
i=1) denotes mean of a GP trained on all available evaluations {Rb

i }M
i=1,

and γk,i ∈ [0, 1] is a mixing weight. We show that an optimal weight can be found by calculating

γk,i =
V[Rb

k,i]−Cov[µGP
k,i , Rb

k,i]

(E[µGP
k,i ]−R

b
k,i)

2 + V[µGP
k,i − Rb

k,i]
. (3)

This choice minimizes the magnitude of the noise εk,i, i.e., the mean squared error (MSE) of our
estimator

MSE(R̃b
k,i) = [γk,i(E[µGP

k,i ]−R
b
k,i)]

2 + V[γk,iµ
GP
k,i + (1− γk,i)Rb

k,i]. (4)

We present approximations of (3) that provide near-optimal reduction of the MSE in each step.

III. Results

We validate our smoothing approach using OUU problems derived from the CUTEst benchmark
suite showing improved results compared to other optimization methods. Additionally, we
demonstrate the use of multilevel Monte Carlo estimators of the robustness measures, and their
recently developed error estimators (see [Menhorn et al., 2018]), for an artificial turbulent flow
scenario and a realistic scramjet design optimization problem.
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