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ABSTRACT

Hypervolume is an indicator to assess the quality of an obtained solution-set in multi- and
many-objective optimization. Hypervolume-based optimization algorithms are rarely used for
solving many-objective optimization problems due to the bottleneck of computing the hypervol-
ume contributions of each solution. The current fastest exact hypervolume-computation algorithm
is the incremental method [3]. However, it is not scalable to high dimensional problems because the
computation cost grows exponentially with respect to problem’s dimension. An alternative method
for computing hypervolume-contribution is by using approximations, either approximating the
total hypervolume or approximating the (least) contributions.

Examples of hypervolume-approximation algorithms have been proposed by Bringmann and
Friedrich [5, 4], Ishibuchi, et al. [6], Bader, et al. [1]. Among these algorithms, only [5] has
a guaranteed error bound. In this work we propose a novel approximation method, which
incorporates uncertainty quantification techniques, based on kriging metamodels. Kriging, or
Gaussian Process Regression [7], is a metamodeling approach that approximates outputs over the
entire search space, and quantifies the uncertainty of the predictor through the mean square error
(MSE), also known as kriging variance [10]. Kriging is well-known as an effective predictor because
the kriging variance can be exploited to control the accuracy of the approximations.

More formally, let f (x) be a deterministic function that is analytically intractable, where
x = (x1, ..., xd)

T is an input vector of decision variables of dimension d. In the interest of fitting
a kriging metamodel for the response at n design points, kriging assumes that the unknown
response surface can be represented as f (x) = f(x)Tβ + M(x), where f(x) is a vector of known
trend functions (i.e., a prior trend model that can be defined as a smoothly varying deterministic
function), β is a vector of unknown parameters of compatible dimension and M(x) is a realization
of a mean zero covariance-stationary Gaussian random field. It is common to consider a constant
β instead of the trend term, as it has shown to more useful in practice [8].

In kriging, some samples are taken from the expensive source as training data to build a
cheaper prediction model. We consider several metamodels that are fitted with different predictors
(e.g., objective values, R2 and crowding distance). The proposed method works as follows: after
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computing the e.g. expensive and exact hypervolume contributions of the points in the current
front, we fit a kriging metamodel to the response surface of the hypervolume contribution. We
exploit the kriging information to search for new points in view of improving the current front.
Since for higher dimensions (i.e., more than 10 objectives), even computing the exact hypervolume
contribution of each point in the current front is expensive, we also use other indicators with less
computational complexity as predictors.

The consistency and correctness rate of the metamodels, as well as the computational cost, are
compared against the exact hypervolume contributions and the newly proposed approximation
method of Shang, et al.[9]. Preliminary results show that the method has potential. By exploiting
both the kriging predictor and its uncertainty, the approximations can be used to sample points
in e.g., sequential algorithms such as SMS-EMOA [2], as the computational cost is reduced
significantly. Furthermore, we observe that the estimation of the kriging hyperparameters (via
maximum likelihood) and the choice of kernel play a crucial role in training the metamodel in order
to achieve accurate approximations. Additional experiments will provide valuable information in
this regard.
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