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ABSTRACT

We consider the problem of estimating robust bounds on a functional of the unknown state of
a dynamical system, using noisy measurements of the system’s historical evolution, and given
only partially specified probabilistic descriptions of the system’s initial state and measurement
(error) models. This problem is a general version of the well-known filtering problem, which finds
applications throughout science and engineering. The generalisation studied in this work is based
on the theory of imprecise probabilities [Augustin et al., 2014].

Formally, we consider a dynamical system xt, t ≥ 0, taking values in a measurable space
(X ,AX ), with X ⊂ Rd and d ≥ 1. The system’s evolution is governed by the time-homogeneous
non-linear vector differential equation

dxt = f (xt)dt . (1)

With P0, a probability measure on (X ,AX ), we assume that the initial state x0 is an unknown
realisation of a random variable X0 ∼ P0. Together with (1), this induces random variables Xt,
which describe the (uncertainty about the) state of the system at each time t. Explicitly, if for all
t ≥ 0 we define the map Ft : X → X as the point-wise solution to (1), Ft(x0) := x0 +

∫ t
0 f (xτ)dτ,

then Xt is a random variable governed by the push-forward measure Pt := P0 ◦ F−1
t on (X ,AX ).

In the setting with imprecise probabilities, we additionally deal with (epistemic) uncertainty
about the initial distribution P0. We then say that P0 is an element of some set P0 of probability
measures on (X ,AX ). Notably, we do not consider any probability distribution over this set P0.

Finally, it is assumed that the system can only be observed through noisy measurements.
The measurement yt taken at time t ≥ 0 is a realisation of a random variable Yt, governed by a
(stochastic) measurement model P(Yt | ·). We again do not assume full knowledge about P(Yt | ·);
instead, we only know that P(Yt | ·) ∈ P(Yt | xt) for some set of probability measures P(Yt | xt).
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The filtering problem can now in general be described as computing the expected value of
some function h : X → R on the uncertain state Xt, given observed measurements ys1 , . . . , ysn .
When using imprecise probabilities, there are multiple precise probability models compatible with
our set-valued assessments. The set of these compatible models is denoted P . Any element P ∈ P
is a probabilistic model, for which we can compute the quantity of interest using Bayes’ rule. The
aim is now to compute the lower- and upper expectations,

E
[
h(Xt)

∣∣ ys1 , . . . , ysn

]
:= inf

P∈P
EP
[
h(Xt) | ys1 , . . . , ysn

]
E
[
h(Xt)

∣∣ ys1 , . . . , ysn

]
:= sup

P∈P
EP
[
h(Xt) | ys1 , . . . , ysn

] (2)

which are the tightest possible bounds compatible with our imprecise assessments.
To the best of our knowledge, this is the first time that this filtering problem is considered

at this level of generality. A non-exhaustive list of related work includes the imprecise Kalman
filter [Benavoli et al., 2011], which assumes the equations of motion to be linear; particle filters
based on random set theory [Ristic, 2013], which deals with less general uncertainty structures;
and filtering with imprecise hidden Markov chains [Krak et al., 2017], which assumes X is finite.

In our current work, we take a heuristic approach to computing—approximately—the quantities
of interest. To this end, we introduce a novel algorithm based on a problem that is equivalent to
solving (2); this form is known as the generalised Bayes’ rule in the imprecise probability literature.
A known recursive decomposition thereof allows us to reduce the problem to computing (i) the
n (independent) lower- and upper likelihoods of the states xsi given the observations ysi , (ii) the
solution to infP0∈P0

∫
X g(x)dP0(x) for any g : X → R, and (iii) the map Ft for any t. We solve

problem (i) trivially by parameterising the set P(Y |X) directly in terms of these lower- and
upper likelihoods—a more general method would require solving the optimisation explicitly. The
problem (ii) is just the lower expectation with respect to the initial model P0, which although it
cannot really be simplified further, is relatively straightforward when compared to the original
problem (2). We solve (iii) by replacing the maps Ft with surrogate model approximations that
are both local in time (different surrogates for different values of t) and local in space (the
approximations are only accurate on certain subsets of X ). We build these surrogates on a set of
points quasi-randomly sampled from a sequential estimate of an imprecise (1− α)× 100% credible
region of Xt, conditional on the sequential observations, and then propagated forward in time.

In this work, the developed method is applied to the case of robust state estimation of an Earth
satellite orbiting in a strongly perturbed environment, and its performance compared against a
traditional filtering approach based on precise probability distributions.
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